Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Detecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learning
 
  • Details

Detecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learning

Journal
Journal of Biophotonics
Journal Volume
14
Journal Issue
1
Date Issued
2021
Author(s)
Ho C.-J
Calderon-Delgado M
Chan C.-C
Lin M.-Y
Tjiu J.-W
Huang S.-L
HOMER H. CHEN  
SHENG-LUNG HUANG  
DOI
10.1002/jbio.202000271
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091243939&doi=10.1002%2fjbio.202000271&partnerID=40&md5=dee08ed0647346761dbc504b49145214
https://scholars.lib.ntu.edu.tw/handle/123456789/607104
Abstract
The standard medical practice for cancer diagnosis requires histopathology, which is an invasive and time-consuming procedure. Optical coherence tomography (OCT) is an alternative that is relatively fast, noninvasive, and able to capture three-dimensional structures of epithelial tissue. Unlike most previous OCT systems, which cannot capture crucial cellular-level information for squamous cell carcinoma (SCC) diagnosis, the full-field OCT (FF-OCT) technology used in this paper is able to produce images at sub-micron resolution and thereby facilitates the development of a deep learning algorithm for SCC detection. Experimental results show that the SCC detection algorithm can achieve a classification accuracy of 80% for mouse skin. Using the sub-micron FF-OCT imaging system, the proposed SCC detection algorithm has the potential for in-vivo applications. ? 2020 Wiley-VCH GmbH
Subjects
computer-aided diagnosis
convolutional neural network
deep learning
optical coherence tomography
squamous cell carcinoma
Diagnosis
Learning algorithms
Optical tomography
Signal detection
Tomography
Classification accuracy
Detection algorithm
Epithelial tissue
Full-field optical coherence tomographies
Squamous cell carcinoma
Sub-micron resolutions
Three-dimensional structure
Time-consuming procedure
Deep learning
algorithm
animal
diagnostic imaging
intestine tumor
mouse
Algorithms
Animals
Carcinoma, Squamous Cell
Deep Learning
Intestinal Neoplasms
Mice
Tomography, Optical Coherence
SDGs

[SDGs]SDG3

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science