Analysis of the biochemical reaction status by real-time monitoring molecular diffusion behaviors using a transistor biosensor integrated with a microfluidic channel
Journal
ACS Omega
Journal Volume
6
Journal Issue
18
Pages
11911-11917
Date Issued
2021
Author(s)
Abstract
Traditional methods of monitoring biochemical reactions measure certain detectable reagents or products while assuming that the undetectable species follow the stoichiometry of the reactions. Here, based upon the metal-oxide thin-film transistor (TFT) biosensor, we develop a real-time molecular diffusion model to benchmark the concentration of the reagents and products. Using the nicotinamide adenine dinucleotide (NADH)-oxaloacetic acid with the enzyme of malate dehydrogenase as an example, mixtures of different reagent concentrations were characterized to extract the ratio of remaining concentrations between NAD+ and NADH. We can thus obtain the apparent equilibrium constant of the reaction, (8.06 ± 0.61) × 104. Because the whole analysis was conducted using a TFT sensor fabricated using a semiconductor process, our approach has the advantages of exploring biochemical reaction kinetics in a massively parallel manner. ? 2021 The Authors. Published by American Chemical Society.
Type
journal article
