Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Improving algorithm for the alignment of consecutive, whole-slide, immunohistochemical section Images
 
  • Details

Improving algorithm for the alignment of consecutive, whole-slide, immunohistochemical section Images

Journal
Journal of Pathology Informatics
Journal Volume
12
Journal Issue
1
Date Issued
2021
Author(s)
Liang C.-W
RUEY-FENG CHANG  
Fang P.-W
Chen C.-M.
DOI
10.4103/jpi.jpi_106_20
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114638908&doi=10.4103%2fjpi.jpi_106_20&partnerID=40&md5=1c1bd744d11744ed4d8733727db48577
https://scholars.lib.ntu.edu.tw/handle/123456789/607455
Abstract
Background: Accurate and precise alignment of histopathology tissue sections is a key step for the interpretation of the proteome topology and cell level three-dimensional (3D) reconstruction of diseased tissues. However, the realization of an automated and robust method for aligning nonglobally stained immunohistochemical (IHC) sections is still challenging. In this study, we aim to assess the feasibility of multidimensional graph-based image registration on aligning serial-section and whole-slide IHC section images. Materials and Methods: An automated, patch graph-based registration method was established and applied to align serial, whole-slide IHC sections at ×10 magnification (average 32,947 × 27,054 pixels). The alignment began with the initial alignment of high-resolution reference and translated images (object segmentation and rigid registration) and nonlinear registration of low-resolution reference and translated images, followed by the multidimensional graph-based image registration of the segmented patches, and finally, the fusion of deformed patches for inspection. The performance of the proposed method was formulated and evaluated by the Hausdorff distance between continuous image slices. Results: Sets of average 315 patches from five serial whole slide, IHC section images were tested using 21 different IHC antibodies across five different tissue types (skin, breast, stomach, prostate, and soft tissue). The proposed method was successfully automated to align most of the images. The average Hausdorff distance was 48.93 μm with a standard deviation of 14.94 μm, showing a significant improvement from the previously published patch-based nonlinear image registration method (average Hausdorff distance of 93.89 μm with 50.85 μm standard deviation). Conclusions: Our method was effective in aligning whole-slide tissue sections at the cell-level resolution. Further advancements in the screening of the proteome topology and 3D tissue reconstruction could be expected. ? 2021 Wolters Kluwer Medknow Publications. All rights reserved.
Subjects
Cell-level resolution
Image registration
Immunohistochemistry
Multidimensional graph-based registration
Proteome topology
Three-dimensional tissue reconstruction
Whole-slide images
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science