Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Communication Engineering / 電信工程學研究所
  4. Two-Stage Neural Network Classifier for the Data Imbalance Problem with Application to Hotspot Detection
 
  • Details

Two-Stage Neural Network Classifier for the Data Imbalance Problem with Application to Hotspot Detection

Journal
Proceedings - Design Automation Conference
Journal Volume
2021-December
Pages
175-180
Date Issued
2021
Author(s)
Wang B
Jiang L
Zhu W
Guo L
Chen J
YAO-WEN CHANG  
DOI
10.1109/DAC18074.2021.9586237
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119418184&doi=10.1109%2fDAC18074.2021.9586237&partnerID=40&md5=66c4d9968c52c5030ea13d05552764f6
https://scholars.lib.ntu.edu.tw/handle/123456789/607517
Abstract
The data imbalance problem often occurs in nanometer VLSI applications, where normal cases far outnumber error ones. Many imbalanced data handling methods have been proposed, such as oversampling minority class samples and downsampling majority class samples. However, existing methods focus on improving the quality of minority classes while causing quality deterioration of majority ones. In this paper, we propose a two-stage classifier to handle the data imbalance problem. We first develop an iterative neural network framework to reduce false alarms. Then the oversampling method on a final classification network is applied to predict the two classes better. As a result, the data imbalance problem is well handled, and the quality deterioration of majority classes is also reduced. Since the iterative stage does not change any existing network structure, any convolutional neural network can be used in the framework. Compared with the state-of-the-art imbalanced data handling methods, experimental results on the hotspot detection problem show that our two-stage classification method achieves the best prediction accuracy and reduces false alarms significantly. ? 2021 IEEE.
Subjects
Classification (of information)
Convolutional neural networks
Data handling
Deterioration
Iterative methods
Data imbalance
Down sampling
Hotspot detections
Imbalance problem
Imbalanced data
Nanometer VLSI
Neural networks classifiers
Over sampling
Quality deteriorations
Two-stage classifiers
Errors
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science