Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Development of a motor imagery based brain-computer interface for humanoid robot control applications
 
  • Details

Development of a motor imagery based brain-computer interface for humanoid robot control applications

Journal
Proceedings of the IEEE International Conference on Industrial Technology
Journal Volume
2016-May
Pages
1607-1637
Date Issued
2016
Author(s)
Prakaksita N.
Kuo C.-Y.
Kuo C.-H.
CHUNG-HSIEN KUO  
DOI
10.1109/ICIT.2016.7475001
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84974603464&doi=10.1109%2fICIT.2016.7475001&partnerID=40&md5=e078f4c1e96a49028a581f9783b48f3b
https://scholars.lib.ntu.edu.tw/handle/123456789/611568
Abstract
This paper focuses on the developments of asynchronous motor imagery (MI) based brain-computer interfaces (BCIs) applications, signal processing and machine learning to provide some basic capabilities for consumer grade products. For the proposed MI detection technique, two channels of FC5 and FC6 according to 10-20 system over primary motor area are used to recognize 3 mental tasks of tongue, left hand and right hand movements. The amplitude features of EEG signals are extracted from power spectral analysis especially in mu rhythm (8-12 Hz) and low beta wave (12-16 Hz) bands. MI features were obtained from offline analysis, and then applied to neural network (NN) with particle swarm optimization (PSO). The classification paradigm then applied to real-time BCI for humanoid robot control applications in terms of recognized MI classes from subjects. According to the experiments of 45 trials for a healthy subject, the NN-based MI recognition accuracy with PSO is 91%. ? 2016 IEEE.
Subjects
Anthropomorphic robots
Artificial intelligence
Biomedical signal processing
Electroencephalography
Induction motors
Interfaces (computer)
Learning systems
Neural networks
Particle swarm optimization (PSO)
Signal processing
Spectrum analysis
Brain computer interfaces (BCIs)
Healthy subjects
Humanoid robot controls
Motor imagery
Neural network (nn)
Off-line analysis
Power spectral analysis
Recognition accuracy
Brain computer interface
SDGs

[SDGs]SDG3

Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science