Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Vision-based obstacle avoidance navigation with autonomous humanoid robots for structured competition problems
 
  • Details

Vision-based obstacle avoidance navigation with autonomous humanoid robots for structured competition problems

Journal
International Journal of Humanoid Robotics
Journal Volume
10
Journal Issue
3
Date Issued
2013
Author(s)
Kuo C.-H.
Chou H.-C.
Chi S.-W.
Lien Y.-D.
CHUNG-HSIEN KUO  
DOI
10.1142/S0219843613500217
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84885158365&doi=10.1142%2fS0219843613500217&partnerID=40&md5=afd5a07f71c8706c92591be09d3ed082
https://scholars.lib.ntu.edu.tw/handle/123456789/611584
Abstract
Biped humanoid robots have been developed to successfully perform human-like locomotion. Based on the use of well-developed locomotion control systems, humanoid robots are further expected to achieve high-level intelligence, such as vision-based obstacle avoidance navigation. To provide standard obstacle avoidance navigation problems for autonomous humanoid robot researches, the HuroCup League of Federation of International Robot-Soccer Association (FIRA) and the RoboCup Humanoid League defined the conditions and rules in competitions to evaluate the performance. In this paper, the vision-based obstacle avoidance navigation approaches for humanoid robots were proposed in terms of combining the techniques of visual localization, obstacle map construction and artificial potential field (APF)-based reactive navigations. Moreover, a small-size humanoid robot (HuroEvolutionJR) and an adult-size humanoid robot (HuroEvolutionAD) were used to evaluate the performance of the proposed obstacle avoidance navigation approach. The navigation performance was evaluated with the distance of ground truth trajectory collected from a motion capture system. Finally, the experiment results demonstrated the effectiveness of using vision-based localization and obstacle map construction approaches. Moreover, the APF-based navigation approach was capable of achieving smaller trajectory distance when compared to conventional just-avoiding-nearest-obstacle-rule approach. ? 2013 World Scientific Publishing Company.
Subjects
Artificial potential fields
Autonomous humanoid robots
Humanoid robot
Locomotion control systems
Motion capture system
Navigation performance
Vision based localization
Vision based navigation
Collision avoidance
Intelligent robots
Navigation
Anthropomorphic robots
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science