Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Deep Learning for Automatic Hyoid Tracking in Videofluoroscopic Swallow Studies
 
  • Details

Deep Learning for Automatic Hyoid Tracking in Videofluoroscopic Swallow Studies

Journal
Dysphagia
Date Issued
2022-04-28
Author(s)
MING-YEN HSIAO  
Weng, Chi-Hung
Wang, Yu-Chen
SHENG-HAO CHENG  
KUO-CHANG WEI  
Tung, Po-Ya
JO-YU CHEN  
Yeh, Chao-Yuan
TYNG-GUEY WANG  
DOI
10.1007/s00455-022-10438-0
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/612498
URL
https://scholars.lib.ntu.edu.tw/handle/123456789/610983
Abstract
The hyoid bone excursion is one of the most important gauges of larynx elevation in swallowing, contributing to airway protection and bolus passage into the esophagus. However, the implications of various parameters of hyoid bone excursion, such as the horizontal or vertical displacement and velocity, remain elusive and raise the need for a tool providing automatic kinematics analysis. Several conventional and deep learning-based models have been applied automatically to track the hyoid bone, but previous methods either require partial manual localization or do not transform the trajectory by anatomic axis. This work describes a convolutional neural network-based algorithm featuring fully automatic hyoid bone localization and tracking and spine axis determination. The algorithm automatically estimates the hyoid bone trajectory and calculates several physical quantities, including the average velocity and displacement in horizontal or vertical anatomic axis. The model was trained in a dataset of 365 videos of videofluoroscopic swallowing from 189 patients in a tertiary medical center and tested using 44 videos from 44 patients with different dysphagia etiologies. The algorithm showed high detection rates for the hyoid bone. The results showed excellent inter-rater reliability for hyoid bone detection, good-to-excellent inter-rater reliability for calculating the maximal displacement and the average velocity of the hyoid bone in horizontal or vertical directions, and moderate-to-good reliability in calculating the average velocity in horizontal direction. The proposed algorithm allows for complete automatic kinematic analysis of hyoid bone excursion, providing a versatile tool with high potential for clinical applications.
Subjects
Convolutional neural networks; Deep learning; Dysphagia; Hyoid bone; Videofluoroscopic swallowing study
Publisher
SPRINGER
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science