Repository logo
  • English
  • 中文
Log In
  1. Home
 
  • Details

Nucleation and growth of epitaxial silicide in silicon nanowires

Journal
Materials Science and Engineering R: Reports
Journal Volume
70
Journal Issue
3月6日
Pages
112-125
Date Issued
2010
Author(s)
Chou Y.-C.; Lu K.-C.; Tu K.N.
YI-CHIA CHOU 
DOI
10.1016/j.mser.2010.06.005
DOI
MIGIE
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649315830&doi=10.1016%2fj.mser.2010.06.005&partnerID=40&md5=e2f9219d65fc5257abdbf196a183067e
https://scholars.lib.ntu.edu.tw/handle/123456789/614684
Abstract
Transition-metal silicides have been used in the salicide process to form gate and source/drain contacts in MOSFET devices. How to control silicide formation in shallow junction devices and the kinetics of single silicide phase formation between the Si and metal thin films have received extensive attention and study. As the trend of miniaturization of Si devices moves from 45 nm to smaller sizes, the formation of nanoscale metal silicides has attracted renewed interest in silicide formation. Nanostructures in Si nanowires have been studied for basic components in electronic and optoelectronics devices, especially for biosensors. Well-defined nanoscale building blocks such as ohmic contacts and gates on Si nanowires must be developed in order to be assembled into functional circuit components in future nanotechnology. It requires a systematic study of solid-state chemical reactions in the nanoscale to form these circuit components. In this review, we compare silicide formation in thin films and in nanowires and focus on the nucleation and growth of epitaxial silicides. The difference of silicide formation between the thin film case and the nanowire case, especially the kinetics of nucleation and growth, will be emphasized.
Subjects
Circuit components; Epitaxial silicides; Functional circuits; Kinetics of nucleation; Metal silicide; Metal thin film; Nano scale; Nanoscale building blocks; Nanoscale metals; Nucleation and growth; Salicides; Shallow junction; Si devices; Si nanowire; Silicide formation; Silicide phase; Silicon nanowire; Silicon Nanowires; Systematic study; Transition-metal silicides; Biosensors; Epitaxial films; Film growth; Growth kinetics; MOSFET devices; Nanostructured materials; Nanowires; Nucleation; Ohmic contacts; Silicides; Silicon; Solid state reactions; Transition metals; Vapor deposition; Semiconducting silicon compounds
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science