https://scholars.lib.ntu.edu.tw/handle/123456789/616355
Title: | Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst | Authors: | Qorbani M. Lai Y.-R. Kholimatussadiah S. Quadir S. Huang C.-Y. Hayashi M. Chen K.-H. Chen L.-C. LI-CHYONG CHEN |
Issue Date: | 2022 | Journal Volume: | 13 | Journal Issue: | 1 | Source: | Nature Communications | Abstract: | Ascertaining the function of in-plane intrinsic defects and edge atoms is necessary for developing efficient low-dimensional photocatalysts. We report the wireless photocatalytic CO2 reduction to CH4 over reconstructed edge atoms of monolayer 2H-WSe2 artificial leaves. Our first-principles calculations demonstrate that reconstructed and imperfect edge configurations enable CO2 binding to form linear and bent molecules. Experimental results show that the solar-to-fuel quantum efficiency is a reciprocal function of the flake size. It also indicates that the consumed electron rate per edge atom is two orders of magnitude larger than the in-plane intrinsic defects. Further, nanoscale redox mapping at the monolayer WSe2–liquid interface confirms that the edge is the most preferred region for charge transfer. Our results pave the way for designing a new class of monolayer transition metal dichalcogenides with reconstructed edges as a non-precious co-catalyst for wired or wireless hydrogen evolution or CO2 reduction reactions. © 2022, The Author(s). |
URI: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126200297&doi=10.1038%2fs41467-022-28926-0&partnerID=40&md5=c8664063cfe16d3cc7e3c72ff4fddef6 https://scholars.lib.ntu.edu.tw/handle/123456789/616355 |
ISSN: | 20411723 | DOI: | 10.1038/s41467-022-28926-0 | SDG/Keyword: | carbon dioxide;catalysis;catalyst;experimental study;hydrogen;mapping method;reduction;transition element |
Appears in Collections: | 凝態科學研究中心 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.