Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. An Artificial Intelligence-Enabled ECG Algorithm for the Prediction and Localization of Angiography-Proven Coronary Artery Disease
 
  • Details

An Artificial Intelligence-Enabled ECG Algorithm for the Prediction and Localization of Angiography-Proven Coronary Artery Disease

Journal
Biomedicines
Journal Volume
10
Journal Issue
2
Pages
394
Date Issued
2022
Author(s)
PANG-SHUO HUANG  
Tseng Y.-H.
Tsai C.-F.
JIEN-JIUN CHEN  
Yang S.-C.
Chiu F.-C.
ZHENG-WEI CHEN  
JUEY-JEN HWANG  
ERIC YAO-YU CHUANG  
YI-CHIH WANG  
CHIA-TI TSAI  
DOI
10.3390/biomedicines10020394
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124530799&doi=10.3390%2fbiomedicines10020394&partnerID=40&md5=71ae5320440f69adbd24c66c77a94639
https://scholars.lib.ntu.edu.tw/handle/123456789/621262
Abstract
(1) Background: The role of using artificial intelligence (AI) with electrocardiograms (ECGs) for the diagnosis of significant coronary artery disease (CAD) is unknown. We first tested the hypothesis that using AI to read ECG could identify significant CAD and determine which vessel was obstructed. (2) Methods: We collected ECG data from a multi-center retrospective cohort with patients of significant CAD documented by invasive coronary angiography and control patients in Taiwan from 1 January 2018 to 31 December 2020. (3) Results: We trained convolutional neural networks (CNN) models to identify patients with significant CAD (>70% stenosis), using the 12,954 ECG from 2303 patients with CAD and 2090 ECG from 1053 patients without CAD. The Marco-average area under the ROC curve (AUC) for detecting CAD was 0.869 for image input CNN model. For detecting individual coronary artery obstruction, the AUC was 0.885 for left anterior descending artery, 0.776 for right coronary artery, and 0.816 for left circumflex artery obstruction, and 1.0 for no coronary artery obstruction. Marco-average AUC increased up to 0.973 if ECG had features of myocardial ischemia. (4) Conclusions: We for the first time show that using the AI-enhanced CNN model to read standard 12-lead ECG permits ECG to serve as a powerful screening tool to identify significant CAD and localize the coronary obstruction. It could be easily implemented in health check-ups with asymptomatic patients and identifying high-risk patients for future coronary events. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Subjects
Artificial intelligence; Convolutional neural network; Coronary artery disease; Deep learning
SDGs

[SDGs]SDG3

Publisher
MDPI
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science