Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Horticulture and Landscape Architecture / 園藝暨景觀學系
  4. Thickness-dependent topological phase transition and Rashba-like preformed topological surface states of α-Sn(001) thin films on InSb(001)
 
  • Details

Thickness-dependent topological phase transition and Rashba-like preformed topological surface states of α-Sn(001) thin films on InSb(001)

Journal
Physical Review B
Journal Volume
105
Journal Issue
7
Date Issued
2022
Author(s)
Chen K.H.M
Lin K.Y
Lien S.W
Huang S.W
CHIA-KUEN CHENG  
Lin H.Y
Hsu C.-H
Chang T.-R
Cheng C.-M
MINGHWEI HONG  
Kwo J.
DOI
10.1103/PhysRevB.105.075109
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124454609&doi=10.1103%2fPhysRevB.105.075109&partnerID=40&md5=23f7ca5802c0140a7661418a09fe5cc4
https://scholars.lib.ntu.edu.tw/handle/123456789/626182
Abstract
Topological materials, possessing spin-momentum locked topological surface states (TSS), have attracted much interest due to their potential applications in spintronics. α-phase Sn (α-Sn), being one of them, displays enriched topological phases via band-gap engineering through a strain or confinement effect. In this work, we investigated the band evolution of in-plane compressively strained α-Sn(001) thin films on InSb(001) in a wide range of thickness from 3 bilayers (BL) to 370 BL by combining angle-resolved photoemission spectra and first-principles calculations. Gapped surface states evolved to a linearly dispersive TSS at a critical thickness of 6 BL, indicating that the system undergoes a phase transition from topologically trivial to nontrivial. For films thicker than 30 BL, additional Rashba-like surface states (RSS) were identified. These RSS served as preformed TSS in another strain-induced topological phase transition. In thick films, 370-BL α-Sn(001), so as to preclude the confinement effect in thin films, our results were consistent with a Dirac semimetal phase with Dirac nodes located along Formula Presented. This thickness-dependent band-structure study deepens our understanding of topological phase transitions and the evolution of Dirac states. Furthermore, the coexistence of TSS and RSS in a Dirac semimetal α-Sn might significantly enhance the potential for spintronic applications. ©2022 American Physical Society
Other Subjects
Antimony compounds; Calculations; Energy gap; III-V semiconductors; Indium antimonides; Thick films; Thin films; Topology; Angle-resolved photoemission; Band gap engineering; Bi-layer; Confinement effects; Photoemission spectrum; Spin momentum; Strain effect; Thin-films; Topological materials; Topological phase; Surface states
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science