Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Organizations
  • Researchers
  • Research Outputs
  • Explore by
    • Organizations
    • Researchers
    • Research Outputs
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. NTU Scholars
  2. 醫學院
  3. 醫學系
Please use this identifier to cite or link to this item: https://scholars.lib.ntu.edu.tw/handle/123456789/627650
Title: Shear-wave elasticity imaging of a liver fibrosis mouse model using high-frequency ultrasound
Authors: Yeh, Chia-Lun
Chen, Bo-Rong
Tseng, Ling-Yi
Jao, Ping
TUNG-HUNG SU 
Li, Pai-Chi
Keywords: ACOUSTIC RADIATION FORCE; HEPATIC-FIBROSIS; TRANSIENT ELASTOGRAPHY; STIFFNESS; CIRRHOSIS; VISCOELASTICITY; QUANTIFICATION; VISCOSITY; DIAGNOSIS; ACCURACY
Issue Date: Jul-2015
Publisher: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Journal Volume: 62
Journal Issue: 7
Start page/Pages: 1295
Source: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Abstract: 
The objective of this study was to develop a high-frequency imaging platform for evaluating liver fibrosis in mice based on shear-wave elasticity imaging (SWEI). Although SWEI has been used to diagnose hepatic fibrosis clinically, it is performed at relatively low frequencies (<20 MHz). For preclinical ultrasound imaging in small animals, a high-frequency (>30 MHz) single-element transducer with mechanical scanning is often used. In this study we developed a new SWEI system based on a 40-MHz single-element transducer for imaging and a separate 20-MHz excitation transducer for producing the radiation force and the associated shear waves. Liver fibrosis was induced in ten C57BL/6 (B6) mice using carbon tetrachloride; the other ten mice served as the control group. Synchronizing the excitation beam (i.e., the beam from the excitation transducer) and the detection beam sequence (i.e., the beam from the imaging transducer) allows this mechanical-scanning setup to analyze the shear-wave dispersion relation. The liver viscoelastic properties were determined in vivo by measuring the shear-wave dispersion curve followed by fitting to the Voigt model. The mice were then killed and the fibrosis stage was evaluated (from F0 to F4) based on the METAVIR score. The measured mean values of liver elasticity and viscosity, respectively, ranged from 1.06 to 1.89 kPa and from 1.29 to 1.75 Pa∙s for normal F0 and fibrosis stages of F3 and F4. The Spearman coefficients for the correlations between the measured elasticity and viscosity at various fibrosis stages as assessed by the METAVIR score were 0.73 (p < 0.001) and 0.634 (p = 0.0013), respectively. We also found that the collagen content in the liver was linearly correlated with the measured elasticity (r(2) = 0.54, p < 0.001) and less strongly with the viscosity (r2 = 0.26, p = 0.022). Finally, the diagnosis performance of high-frequency SWEI was evaluated using multivariate receiver operating characteristic curve (ROC) analysis. The areas under the multivariate ROC curve for diagnosing fibrosis stages of F ≥ 3, F = 4, F0 vs. F3, F0 vs. F4, and F3 vs. F4 were 0.9, 0.98, 0.83, 1.0, and 0.96, respectively. Compared with traditional ROC analysis, an improved diagnosis performance was found for diagnosing fibrosis stages of F ≥ 3 and F0 vs. F3. These results demonstrate that the developed high-frequency SWEI platform can yield quantitative viscoelastic properties for diagnosing various fibrosis stages in mice. It is a promising tool for studying the progression of liver fibrosis in preclinical animal models both noninvasively and quantitatively.
URI: https://scholars.lib.ntu.edu.tw/handle/123456789/627650
ISSN: 0885-3010
DOI: 10.1109/TUFFC.2014.006953
Appears in Collections:醫學系

Show full item record

SCOPUSTM   
Citations

11
checked on Mar 27, 2023

WEB OF SCIENCETM
Citations

11
checked on Mar 19, 2023

Page view(s)

13
checked on Mar 26, 2023

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Sherpa Romeo網站查詢,以確認出版單位之版權政策。
    Please use Sherpa Romeo to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback