Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. ROSNet: Robust one-stage network for CT lesion detection *
 
  • Details

ROSNet: Robust one-stage network for CT lesion detection *

Journal
PATTERN RECOGNITION LETTERS
Journal Volume
144
Pages
82
Date Issued
2021
Author(s)
Lung, KY
Chang, CR
Weng, SE
Lin, HS
Shuai, HH
WEN-HUANG CHENG  
DOI
10.1016/j.patrec.2021.01.011
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/628547
URL
https://api.elsevier.com/content/abstract/scopus_id/85100683289
Abstract
Automatic lesion detection from computed tomography (CT) scans is an important task in medical diagnosis. However, three frequent properties of medical data make CT lesion detection a challenging task: (1) Scale variance: Large scale variation is across lesion instances. Especially, it is extremely difficult to detect small lesions; (2) Imbalanced data: The data distributions are highly imbalanced, where few classes account for the majority of data; (3) Prediction stability: Based on our observations, an input lesion image with slightly pixel shift or translation can lead to drastic output mispredictions and this is not allowed for medical applications. To address these challenges, this paper proposes a Robust One-Stage Network (ROSNet) for robust CT lesion detection. Specifically, a novel nested structure of neural networks is developed to generate a series of feature pyramids for detecting CT lesions in various scales, an effective data sensitive class-balanced loss as well as a shift-invariant downsampling strategy are also introduced to improve the detection performance. Experiments are conducted on a large-scale and diverse dataset, DeepLesion, showing that ROSNet outperforms the best performance in MICCAI 2019 by 3.95% (2-class detection task) and 25.41% (8-class detection task) in terms of mean average precision (mAP).
Subjects
Deep learning; Lesion detection; Computed tomography scan; Multi-level feature pyramid; Class-balanced loss
Publisher
ELSEVIER
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science