Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. A machine learning algorithm for predicting prolonged postoperative opioid prescription after lumbar disc herniation surgery. An external validation study using 1,316 patients from a Taiwanese cohort
 
  • Details

A machine learning algorithm for predicting prolonged postoperative opioid prescription after lumbar disc herniation surgery. An external validation study using 1,316 patients from a Taiwanese cohort

Journal
The spine journal : official journal of the North American Spine Society
Journal Volume
22
Journal Issue
7
Pages
1119
Date Issued
2022-07
Author(s)
Yen, Hung-Kuan
Ogink, Paul T
CHUAN-CHING HUANG  
Groot, Olivier Q
Su, Chih-Chi
Chen, Shin-Fu
CHIH-WEI CHEN  
Karhade, Aditya V
Peng, Kuang-Ping
WEI-HSIN LIN  
HONGSEN CHIANG  
Yang, Jiun-Jen
Dai, Shih-Hsiang
Yen, Mao-Hsu
Verlaan, Jorrit-Jan
Schwab, Joseph H
Wong, Tze-Hong
SHU-HUA YANG  
MING-HSIAO HU  
DOI
10.1016/j.spinee.2022.02.009
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/629820
URL
https://api.elsevier.com/content/abstract/scopus_id/85127366821
Abstract
Background context: Preoperative prediction of prolonged postoperative opioid prescription helps identify patients for increased surveillance after surgery. The SORG machine learning model has been developed and successfully tested using 5,413 patients from the United States (US) to predict the risk of prolonged opioid prescription after surgery for lumbar disc herniation. However, external validation is an often-overlooked element in the process of incorporating prediction models in current clinical practice. This cannot be stressed enough in prediction models where medicolegal and cultural differences may play a major role.

Purpose: The authors aimed to investigate the generalizability of the US citizens prediction model SORG to a Taiwanese patient cohort.

Study design: Retrospective study at a large academic medical center in Taiwan.

Patient sample: Of 1,316 patients who were 20 years or older undergoing initial operative management for lumbar disc herniation between 2010 and 2018.

Outcome measures: The primary outcome of interest was prolonged opioid prescription defined as continuing opioid prescription to at least 90 to 180 days after the first surgery for lumbar disc herniation at our institution.

Methods: Baseline characteristics were compared between the external validation cohort and the original developmental cohorts. Discrimination (area under the receiver operating characteristic curve and the area under the precision-recall curve), calibration, overall performance (Brier score), and decision curve analysis were used to assess the performance of the SORG ML algorithm in the validation cohort. This study had no funding source or conflict of interests.

Results: Overall, 1,316 patients were identified with sustained postoperative opioid prescription in 41 (3.1%) patients. The validation cohort differed from the development cohort on several variables including 93% of Taiwanese patients receiving NSAIDS preoperatively compared with 22% of US citizens patients, while 30% of Taiwanese patients received opioids versus 25% in the US. Despite these differences, the SORG prediction model retained good discrimination (area under the receiver operating characteristic curve of 0.76 and the area under the precision-recall curve of 0.33) and good overall performance (Brier score of 0.028 compared with null model Brier score of 0.030) while somewhat overestimating the chance of prolonged opioid use (calibration slope of 1.07 and calibration intercept of -0.87). Decision-curve analysis showed the SORG model was suitable for clinical use.

Conclusions: Despite differences at baseline and a very strict opioid policy, the SORG algorithm for prolonged opioid use after surgery for lumbar disc herniation has good discriminative abilities and good overall performance in a Han Chinese patient group in Taiwan. This freely available digital application can be used to identify high-risk patients and tailor prevention policies for these patients that may mitigate the long-term adverse consequence of opioid dependence: https://sorg-apps.shinyapps.io/lumbardiscopioid/.
Subjects
Asian cohort
External validation
Lumbar disc herniation surgery
Machine learning
Opioid prescription
Publisher
ELSEVIER SCIENCE INC
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science