Biogenic Volatile Organic Compounds and Protein Expressions of Chamaecyparis formosensis and Chamaecyparis obtusa var. formosana Leaves under Different Light Intensities and Temperatures
Journal
Plants (Basel, Switzerland)
Journal Volume
11
Journal Issue
12
Date Issued
2022-06-08
Author(s)
Abstract
Both Chamaecyparis formosensis and C. obtusa var. formosana are representative cypresses of high economic value in Taiwan, the southernmost subtropical region where cypresses are found. Both species show differences of their habitats. To find out the effects of environmental factors on the CO2 assimilation rate and the biogenic volatile organic compound (BVOC) emission of both species, saplings from both species were grown under different light intensity and temperature regimes. The results indicated that the net CO2 assimilation rates and total BVOC emission rates of both species increased with increasing light intensity. C. formosensis showed a higher magnitude of change, but C. obtusa var. formosana had considerably increased sesquiterpenoid and diterpenoid emission in BVOC under high light intensity. Both species grown under higher temperatures had significantly lower BVOC emission rates. Proteomic analyses revealed that compared to C. formosensis saplings, C. obtusa var. formosana saplings had less differentially expressed proteins in terms of protein species and fold changes in response to the growth conditions. These proteins participated mainly in photosynthesis, carbon metabolism, amino acid and protein processing, signal transduction, and stress mechanisms. These proteins might be the major regulatory factors affecting BVOC emission of these two species under different environments.
Subjects
biogenic volatile organic compound; cypress leaf; light intensity; protein expression; temperature
Publisher
MDPI
Type
journal article