Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. Carbon capture of biochar produced by microwave co-pyrolysis: adsorption capacity, kinetics, and benefits
 
  • Details

Carbon capture of biochar produced by microwave co-pyrolysis: adsorption capacity, kinetics, and benefits

Journal
Environmental Science and Pollution Research
Journal Volume
30
Journal Issue
9
Date Issued
2023-02-01
Author(s)
Huang, Yu Fong
PEI-TE CHIUEH  
SHANG-LIEN LO  
DOI
10.1007/s11356-022-23734-x
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/630108
URL
https://api.elsevier.com/content/abstract/scopus_id/85140471860
Abstract
Microwave co-pyrolysis of sewage sludge and leucaena wood was conducted to produce biochar as an adsorbent for CO2 capture. Both microwave power level and blending ratio were crucial factors affecting the CO2 adsorption capacity of biochar. At a power level of 150 W, the biochar produced by microwave co-pyrolysis of 25% sewage sludge and 75% leucaena wood possessed the highest CO2 adsorption capacity. When the biochar was produced at 100 W, its CO2 adsorption capacity was higher than predicted. Based on the proximate and elemental compositions of biochar, two equations were obtained to predict CO2 adsorption capacity. The proximate composition of biochar can provide more precise prediction of CO2 adsorption capacity than elemental composition according to the higher R2 value provided. The blending ratio of 50% would be most appropriate to produce the biochar with acceptable reduction in CO2 adsorption capacity and loss of quantity. The pseudo-second-order model would be most suitable for simulating the kinetic of CO2 adsorption. The biochar produced from 1 metric tonne of sewage sludge and leucaena wood can offset carbon tax by 83 US dollars. Based on experimental results and findings, microwave co-pyrolysis should be a feasible technique to produce biochar possessing high CO2 adsorption capacity.
Subjects
Biochar | Carbon capture | CO adsorption 2 | Kinetics | Microwave co-pyrolysis
SDGs

[SDGs]SDG8

[SDGs]SDG13

Publisher
SPRINGER HEIDELBERG
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science