Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Highly-selective MOF-303 membrane for alcohol dehydration
 
  • Details

Highly-selective MOF-303 membrane for alcohol dehydration

Journal
Journal of Membrane Science
Journal Volume
661
Date Issued
2022-11-05
Author(s)
Lai, Jun Yu
Wang, Ting Yuan
Zou, Changlong
Chen, Jiun Jen
LI-CHIANG LIN  
DUN-YEN KANG  
DOI
10.1016/j.memsci.2022.120879
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/630126
URL
https://api.elsevier.com/content/abstract/scopus_id/85136567744
Abstract
Metal-organic frameworks (MOFs) are an emerging class of crystalline microporous materials, which have drawn considerable attention for separation applications. While a number of successful examples of MOF-based membranes for gas separation have been reported, only a few of pure MOF membranes presented high performance in pervaporation. This work reports on the application of a highly hydrophilic MOF, MOF-303, for dehydration of ethanol as well as isopropanol (IPA) via pervaporation. Dense MOF-303 membranes are fabricated with either a sodium hydroxide or urea solution. The latter recipe renders MOF-303 crystals a low quantity of missing linker; and it also yields a membrane with fewer pinhole-type defects. The MOF-303 membrane prepared with urea presents a relatively low air permeance and much higher separation performance for of water-ethanol and water-IPA mixtures, as compared to that synthesized with sodium hydroxide. The MOF-303-urea membrane possesses high separation factors for water/ethanol (55349) and for water/IPA (3801) at 303 K. At a higher temperature of 343 K, this membrane still offers a good water/ethanol separation factor of 1874. A 7-day pervaporation operation on the MOF-303-urea membrane demonstrates that the separation performance drops gradually during the test, but it can be restored via a thermal treatment on the membrane. Molecular simulations are performed to shed light on the transport property of water, ethanol, and IPA in MOF-303. The computational results suggest that the dehydration capability of this MOF can be attributed to both of its water-selective adsorption and diffusion, particularly the latter. Specifically, a relatively high diffusion barrier to the alcohols in MOF-303 results in the high selectivity of water over ethanol or IPA.
Subjects
Alcohol dehydration | Metal-organic framework | MOF membrane | Pervaporation
Publisher
ELSEVIER
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science