Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Biomedical Electronics and Bioinformatics / 生醫電子與資訊學研究所
  4. Improved inpatient deterioration detection in general wards by using time-series vital signs
 
  • Details

Improved inpatient deterioration detection in general wards by using time-series vital signs

Journal
Scientific Reports
Journal Volume
12
Journal Issue
1
Date Issued
2022-12-01
Author(s)
Su, Chang Fu
Chiu, Shu I.
JYH-SHING JANG  
FEI-PEI LAI  
DOI
10.1038/s41598-022-16195-2
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/630422
URL
https://api.elsevier.com/content/abstract/scopus_id/85133999456
Abstract
Although in-hospital cardiac arrest is uncommon, it has a high mortality rate. Risk identification of at-risk patients is critical for post-cardiac arrest survival rates. Early warning scoring systems are generally used to identify hospitalized patients at risk of deterioration. However, these systems often require clinical data that are not always regularly measured. We developed a more accurate, machine learning-based model to predict clinical deterioration. The time series early warning score (TEWS) used only heart rate, systolic blood pressure, and respiratory data, which are regularly measured in general wards. We tested the performance of the TEWS in two tasks performed with data from the electronic medical records of 16,865 adult admissions and compared the results with those of other classifications. The TEWS detected more deteriorations with the same level of specificity as the different algorithms did when inputting vital signs data from 48 h before an event. Our framework improved in-hospital cardiac arrest prediction and demonstrated that previously obtained vital signs data can be used to identify at-risk patients in real-time. This model may be an alternative method for detecting patient deterioration.
Subjects
CARDIAC-ARREST; CLINICAL DETERIORATION; HEART-RATE; REGRESSION; SCORE
SDGs

[SDGs]SDG3

Publisher
NATURE PORTFOLIO
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science