Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Estimation of Beat-by-Beat Blood Pressure and Heart Rate From ECG and PPG Using a Fine-Tuned Deep CNN Model
 
  • Details

Estimation of Beat-by-Beat Blood Pressure and Heart Rate From ECG and PPG Using a Fine-Tuned Deep CNN Model

Journal
IEEE ACCESS
Journal Volume
10
Pages
85459
Date Issued
2022
Author(s)
Chih-Ta Yen
SHENG-NAN CHANG  
Cheng-Hong Liao
DOI
10.1109/ACCESS.2022.3195857
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/630947
URL
https://api.elsevier.com/content/abstract/scopus_id/85135743917
Abstract
Given that current cuffless blood pressure (BP) measurement technologies feature acceptable overall accuracy, this paper proposed a sufficiently accurate cuffless BP estimation method based on photoplethysmography (PPG) and electrocardiography (ECG) signals. This study used single-channel PPG and ECG signals to estimate heart rate (HR), diastolic BP (DBP), and systolic BP (SBP). A modified long-term recurrent convolutional network comprising a multi-scale convolution network and a long short-term memory (LSTM) network was used to develop a deep learning model for accurately estimating BP and HR. The PPG and ECG signal data of 1551 patients were obtained from the Data Sets-UCI Machine Learning Repository of the University of California, Irvine. The study dataset comprised ECG, PPG, and arterial BP (ABP) signals from the PhysioNet MIMIC II dataset. The original signals were processed by removing noise and artifacts. The aforementioned dataset contains 12,000 records in a hierarchical data format, with each record containing three signals, namely 125-Hz ECG signals from channel II (ECG lead II), 125-Hz PPG signals from the fingertip, and 125-Hz invasive ABP signals. To validate the stability and performance of the developed model, ten-fold cross-validation was conducted. The mean absolute error (MAE) (standard deviation (SD)) values of the developed model for predicting SBP, DBP, and HR were 2.24 mmHg (3.59 mmHg), 1.40 mmHg (2.56 mmHg), and 0.84 bpm (2.23 bpm), respectively. In addition, the estimated SBP and DBP values satisfied the standards of the British Hypertension Society and the Association for the Advancement of Medical Instrumentation. Compared with the methods proposed in other studies, the deep learning model developed in this study required a lower number of layers to provide accurate SBP, DBP, and HR estimations. The results of this study confirmed the effectiveness of the proposed deep learning architecture.
Subjects
Feature extraction; Electrocardiography; Estimation; Heart rate; Deep learning; Convolutional neural networks; Convolution; Photoplethysmography (PPG); electrocardiography (ECG); blood pressure (BP); heart rate (HR); multi-scale convolution; long short-term memory (LSTM); PHOTOPLETHYSMOGRAPHIC SIGNALS; WAVE-FORM; FRAMEWORK
SDGs

[SDGs]SDG3

Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science