https://scholars.lib.ntu.edu.tw/handle/123456789/631015
Title: | Chlorpyrifos induces neuronal cell death via both oxidative stress and Akt activation downstream-regulated CHOP-triggered apoptotic pathways | Authors: | Lin, Jhe-Wei Fu, Shih-Chang Liu, Jui-Ming SHING-HWA LIU Lee, Kuan-I Fang, Kai-Min Hsu, Ren-Jun Huang, Chun-Fa Liu, Kun-Min Chang, Kai-Chih Su, Chin-Chuan Chen, Ya-Wen |
Keywords: | Akt; Apoptosis; CHOP; Chlorpyrifos; Neurotoxicity; Reactive oxygen species | Issue Date: | Feb-2023 | Publisher: | PERGAMON-ELSEVIER SCIENCE LTD | Journal Volume: | 86 | Source: | Toxicology in Vitro | Abstract: | Chlorpyrifos (CPF) is one of the most abundant and widely used organophosphate pesticides for agricultural, industrial, and household purposes in the world. Epidemiological studies have reported that CPF can induce neurotoxic impairments in mammalian, which is linked to an important risk factor for development of neurodegenerative diseases (NDs). However, limited information is available on CPF-induced neurotoxicity, with the underlying exact mechanism remains unclear. In this study, CPF exposure (10-400 μM) significantly reduced Neuro-2a cell viability and induced apoptotic events, including the increase in caspase-3 activity, apoptotic cell population, and cleavage of caspase-3/-7 and PARP. Exposure of Neuro-2a cells to CPF also triggered CHOP activation. Transfection with CHOP-specific siRNA markedly suppressed the expression of CHOP, and attenuated cytotoxicity and apoptotic events in CPF-exposed Neuro-2a cells. Furthermore, CPF exposure obviously evoked the phosphorylation of Akt as well as ROS generation in a time-dependent manner. Pretreatment with LY294002 (an Akt inhibitor) effectively attenuated the CPF-induced Akt phosphorylation, CHOP activation, and apoptotic events, but not that ROS production. Of note, buffering the ROS generation with antioxidant N-acetylcysteine effectively prevented the CPF-induced ROS generation, CHOP activation, and apoptotic events, but not that the Akt phosphorylation. Collectively, these findings indicate that CPF exposure exerts neuronal cytotoxicity via the independent pathways of ROS generation and Akt activation downstream-regulated CHOP-triggered apoptosis, ultimately leading to neuronal cell death. |
URI: | https://scholars.lib.ntu.edu.tw/handle/123456789/631015 | ISSN: | 0887-2333 | DOI: | 10.1016/j.tiv.2022.105483 |
Appears in Collections: | 毒理學研究所 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.