Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Deep neural networks for spatiotemporal PM<inf>2.5</inf> forecasts based on atmospheric chemical transport model output and monitoring data
 
  • Details

Deep neural networks for spatiotemporal PM2.5 forecasts based on atmospheric chemical transport model output and monitoring data

Journal
Environmental Pollution
Journal Volume
306
Date Issued
2022-08-01
Author(s)
Kow, Pu Yun
Chang, Li Chiu
Lin, Chuan Yao
Chou, Charles C.K.
FI-JOHN CHANG  
DOI
10.1016/j.envpol.2022.119348
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129687012&doi=10.1016%2fj.envpol.2022.119348&partnerID=40&md5=07401315cfbd2bd184b69d425ba8ce4a
https://scholars.lib.ntu.edu.tw/handle/123456789/631066
URL
https://api.elsevier.com/content/abstract/scopus_id/85129687012
Abstract
Reliable long-horizon PM2.5 forecasts are crucial and beneficial for health protection through early warning against air pollution. However, the dynamic nature of air quality makes PM2.5 forecasts at long horizons very challenging. This study proposed a novel machine learning-based model (MCNN-BP) that fused multiple convolutional neural networks (MCNN) with a back-propagation neural network (BPNN) for making spatiotemporal PM2.5 forecasts for the next 72 h at 74 stations covering the whole Taiwan simultaneously. Model configuration involved an ensemble of massive hourly air quality and meteorological monitoring datasets and the existing publicly-available PM2.5 simulated (forecasted) datasets from an atmospheric chemical transport (ACT) model. The proposed methodology collaboratively constructed two CNNs to mine the observed data (the past) and the forecasted data from ACT (the future) separately. The results showed that the MCNN-BP model could significantly improve the accuracy of spatiotemporal PM2.5 forecasts and substantially reduce the forecast biases of the ACT model. We demonstrated that the proposed MCNN-BP model with effective feature extraction and good denoising ability could overcome the curse of dimensionality and offer satisfactory regional long-horizon PM2.5 forecasts. Moreover, the MCNN-BP model has considerably shorter computational time (5 min) and lower computational load than the compute-intensive ACT model. The proposed approach hits a milestone in multi-site and multi-horizon forecasting, which significantly contributes to early warning against regional air pollution.
Subjects
Atmospheric chemical transport model | Convolutional neural network (CNN) | Deep neural network (DNN) | PM forecast 2.5 | Regional air quality forecast
SDGs

[SDGs]SDG3

Other Subjects
Atmospheric chemical transport model; Convolutional neural network (CNN); Deep neural network (DNN); PM2.5 forecast; Regional air quality forecast
Publisher
ELSEVIER SCI LTD
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science