Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. Intrinsically Healable Fabrics
 
  • Details

Intrinsically Healable Fabrics

Journal
Advanced Materials Technologies
Date Issued
2023-01-01
Author(s)
Hsu, Hsun Hao
Lo, Tse Yu
Tseng, Yu Hsuan
Lee, Lin Ruei
Chen, Si Rou
Chang, Kai Jie
Kao, Tzu Hsun
ZONG-HONG LIN  
Chou, Ho Hsiu
Chen, Jiun Tai
DOI
10.1002/admt.202300291
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/631441
URL
https://api.elsevier.com/content/abstract/scopus_id/85153600040
Abstract
Wearable electronics with healability have been extensively researched recently. To provide wearing comfort, fabrics are often adopted as the base materials. Intrinsic healability, however, is challenging for fabrics because of the inability to retain the fibrous morphologies. Herein, an unprecedented strategy is presented for producing electrospun fabrics that are intrinsically healable by carefully balancing the crystalline structural support and healing ability. Fluorocarbon polymers with different crystallinities are mixed with ionic liquids to form ionogels, which are spun into fabrics using a unique wet electrospinning apparatus. Importantly, the introduction of the crystalline domains prevents the fusion of the electrospun fibers; even after 1 year, no significant morphological change is observed. The nonwoven fabrics are not only stretchable and waterproof but also intrinsically healable. The ion–dipole interactions between the polar copolymers and ionic liquids provide the reversible physical crosslinking essential to the healing capability. When damaged, the fabrics can be overlapped and healed after applying pressure. Moreover, the fabrics demonstrate healability underwater. Healable sensing devices, pressure, and tensile sensors are also designed by printing ion-conductive gels as electrodes. Both devices show good stability before and after healing. This work demonstrates the first example of intrinsically healable electrospun fabrics, which are promising for fabric-based wearable electronics and smart clothing.
Subjects
fabrics | healing | ion-conductive | ionic liquid | wearables
Publisher
WILEY
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science