Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Artifact-Free Microstructures in the Interfacial Reaction between Eutectic In-48Sn and Cu Using Ion Milling
 
  • Details

Artifact-Free Microstructures in the Interfacial Reaction between Eutectic In-48Sn and Cu Using Ion Milling

Journal
Materials
Journal Volume
16
Journal Issue
9
Date Issued
2023-05-01
Author(s)
Chang, Fu Ling
Lin, Yu Hsin
Hung, Han Tang
Kao, Chen Wei
C. ROBERT KAO  
DOI
10.3390/ma16093290
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/632033
URL
https://api.elsevier.com/content/abstract/scopus_id/85159268714
Abstract
Eutectic In-48Sn was considered a promising candidate for low-temperature solder due to its low melting point and excellent mechanical properties. Both Cu2(In,Sn) and Cu(In,Sn)2 formation were observed at the In-48Sn/Cu interface after 160 °C soldering. However, traditional mechanical polishing produces many defects at the In-48Sn/Cu interface, which may affect the accuracy of interfacial reaction investigations. In this study, cryogenic broad Ar+ beam ion milling was used to investigate the interfacial reaction between In-48Sn and Cu during soldering. The phase Cu6(Sn,In)5 was confirmed as the only intermetallic compound formed during 150 °C soldering, while Cu(In,Sn)2 formation was proven to be caused by room-temperature aging after soldering. Both the Cu6(Sn,In)5 and Cu(In,Sn)2 phases were confirmed by EPMA quantitative analysis and TEM selected area electron diffraction. The microstructure evolution and growth mechanism of Cu6(Sn,In)5 during soldering were proposed. In addition, the Young’s modulus and hardness of Cu6(Sn,In)5 were determined to be 119.04 ± 3.94 GPa and 6.28 ± 0.13 GPa, respectively, suggesting that the doping of In in Cu6(Sn,In)5 has almost no effect on Young’s modulus and hardness.
Subjects
Cu-In-Sn intermetallic compounds | interconnection | interfacial reaction | low-temperature soldering | mechanical properties
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science