Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Efficient Dual Batch Size Deep Learning for Distributed Parameter Server Systems
 
  • Details

Efficient Dual Batch Size Deep Learning for Distributed Parameter Server Systems

Journal
Proceedings - 2022 IEEE 46th Annual Computers, Software, and Applications Conference, COMPSAC 2022
ISBN
9781665488105
Date Issued
2022-01-01
Author(s)
Lu, Kuan Wei
PANGFENG LIU  
Hong, Ding Yong
Wu, Jan Jan
DOI
10.1109/COMPSAC54236.2022.00110
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/632602
URL
https://api.elsevier.com/content/abstract/scopus_id/85136932825
Abstract
Distributed machine learning is essential for applying deep learning models with many data and parameters. Current researches on distributed machine learning focus on using more hardware devices powerful computing units for fast training. Consequently, the model training prefers a larger batch size to accelerate the training speed. However, the large batch training often suffers from poor accuracy due to poor generalization ability. Researchers have come up with many sophisticated methods to address this accuracy issue due to large batch sizes. These methods usually have complex mechanisms, thus making training more difficult. In addition, powerful training hardware for large batch sizes is expensive, and not all researchers can afford it. We propose a dual batch size learning scheme to address the batch size issue. We use the maximum batch size of our hardware for maximum training efficiency we can afford. In addition, we introduce a smaller batch size during the training to improve the model generalization ability. Using two different batch sizes in the same training simultaneously will reduce the testing loss and obtain a good generalization ability, with only a slight increase in the training time. We implement our dual batch size learning scheme and conduct experiments. By increasing 5% of the training time, we can reduce the loss from 1.429 to 1.246 in some cases. In addition, by appropriately adjusting the percentage of large and small batch sizes, we can increase the accuracy by 2.8% in some cases. With the additional 10% increase in training time, we can reduce the loss from 1.429 to 1.193. And after moderately adjusting the number of large batches and small batches used by GPUs, the accuracy can increase by 2.9%. Using two different batch sizes in the same training introduces two complications. First, the data processing speeds for two different batch sizes are different, so we must assign the data proportionally to maximize the overall processing speed. In addition, since the smaller batches will see fewer data due to the overall processing speed consideration, we proportionally adjust their contribution towards the global weight update in the parameter server. We use the ratio of data between the small and large batches to adjust the contribution. Experimental results indicate that this contribution adjustment increases the final accuracy by another 0.9%.
Subjects
batch size | deep neural networks | distributed learning | parameter server
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science