Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Reduced graphene oxide films for reducing hotspot temperatures of electronic devices
 
  • Details

Reduced graphene oxide films for reducing hotspot temperatures of electronic devices

Journal
International Communications in Heat and Mass Transfer
Journal Volume
136
Date Issued
2022-07-01
Author(s)
Huang, Ding Jun
Peng, Wei Tsu
Lee, Yen Ta
MING-CHANG LU  
DOI
10.1016/j.icheatmasstransfer.2022.106193
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/633625
URL
https://api.elsevier.com/content/abstract/scopus_id/85132536896
Abstract
The increase in the number of transistors in electronic circuits has increased the power density of electronic devices, which leads to the formation of hotspots on the microchips of the electronic devices. Hotspots deteriorate the lifespan and reliability of electronic devices. With the advantages of high thermal conductivity (κ), low cost, and feasibility for mass production, reduced graphene oxide (rGO) films have become a promising candidate for dispersing the excessive heat at the hotspots and alleviating the adverse effects caused by the hotspots. In this study, a chemical–thermal method combining the chemical reduction and thermal annealing process at a relatively low temperature of 1200 °C was utilized for the synthesis of rGO films. The synthesis method lowered the annealing temperature and yielded a high-quality rGO film. A high κ of 1653.9 ± 214.7 W/m-K was derived for the rGO film annealed at 1200 °C for 90 min. In addition, by bonding the rGO film on the Si chip, the hotspot temperature and thermal spreading resistance were reduced by 12 °C and 20%, respectively. The results indicate that the rGO films synthesized in this study retain a superior thermal property and can be employed for the thermal management of electronic devices.
Subjects
Chemical reduction | Hotspot | Reduced graphene oxide | Thermal annealing | Thermal conductivity | Thermal resistance
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science