Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Agricultural Chemistry / 農業化學系
  4. First principal observation documenting the three-dimensional uptake of cadmium and spatial distribution of cadmium hydroxyapatite mineral in bone char
 
  • Details

First principal observation documenting the three-dimensional uptake of cadmium and spatial distribution of cadmium hydroxyapatite mineral in bone char

Journal
Chemosphere
Journal Volume
337
Date Issued
2023-10
Author(s)
Biswas, Partha Pratim
Rathod, Jagat
Chiang, Ching-Yu
Liang, Biqing
Wang, Chun-Chieh
Lee, Yao-Chang
Chuang, Yu-Chun
Loni, Prakash C
Chen, Wei-Hsin
SHAN-LI WANG  
DOI
10.1016/j.chemosphere.2023.139357
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/634091
URL
https://api.elsevier.com/content/abstract/scopus_id/85164351631
Abstract
The 3-D matrix scale ion-exchange mechanism was explored for high-capacity cadmium (Cd) removal using bone chars (BC) chunks (1-2 mm) made at 500 °C (500BC) and 700 °C (700BC) in aqueous solutions. The Cd incorporation into the carbonated hydroxyapatite (CHAp) mineral of BC was examined using a set of synchrotron-based techniques. The Cd removal from solution and incorporation into mineral lattice were higher in 500BC than 700BC, and the diffusion depth was modulated by the initial Cd concentration and charring temperature. A higher carbonate level of BC, more pre-leached Ca sites, and external phosphorus input enhanced Cd removal. The 500BC showed a higher CO32-/PO43- ratio and specific surface area (SSA) than the 700BC, providing more vacant sites by dissolution of Ca2+. In situ observations revealed the refilling of sub-micron pore space in the mineral matrix because of Cd incorporation.The X-ray nanodiffraction (XND) analyses revealed that Cd was mainly removed from water by incorporation into the mineral lattice of 500BC via ion exchange, rather than surface sorption and precipitation, and the mineral phase was transformed from hydroxyapatite (HAp) to cadmium hydroxyapatite (Cd-HAp). The Rietveld's refinement of X-ray diffraction (XRD) data resolved up to 91% of the crystal displacement of Ca2+ by Cd2+. The specific phase and stoichiometry of the new Cd-HAp mineral was dependent on the level of ion exchange. This mechanistic study confirmed that 3-D ion exchange was the most important path for heavy metal removal from aqueous solution and immobilization in BC mineral matrix, and put forward a novel and sustainable remediation strategy for Cd removal in wastewater and soil clean-up.
Subjects
Bone char (BC); Cadmium (Cd); Carbonated hydroxyapatite (CHAp); Heavy metal; Ion-exchange; Remediation
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science