Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. Medical Device and Imaging / 醫療器材與醫學影像研究所
  4. Single-shot quantitative phase contrast imaging based on deep learning
 
  • Details

Single-shot quantitative phase contrast imaging based on deep learning

Journal
Biomedical Optics Express
Journal Volume
14
Journal Issue
7
Pages
3458-3468
Date Issued
2023-07-01
Author(s)
YU-CHUN LIN  
YUAN LUO  
Chen, Ying-Ju
HUEI-WEN CHEN  
Young, Tai-Horng  
HSUAN-MING HUANG  
DOI
10.1364/BOE.493828
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/635159
URL
https://api.elsevier.com/content/abstract/scopus_id/85166484441
Abstract
Quantitative differential phase-contrast (DPC) imaging is one of the commonly used methods for phase retrieval. However, quantitative DPC imaging requires several pairwise intensity measurements, which makes it difficult to monitor living cells in real-time. In this study, we present a single-shot quantitative DPC imaging method based on the combination of deep learning (DL) and color-encoded illumination. Our goal is to train a model that can generate an isotropic quantitative phase image (i.e., target) directly from a single-shot intensity measurement (i.e., input). The target phase image was reconstructed using a linear-gradient pupil with two-axis measurements, and the model input was the measured color intensities obtained from a radially asymmetric color-encoded illumination pattern. The DL-based model was trained, validated, and tested using thirteen different cell lines. The total number of training, validation, and testing images was 264 (10 cells), 10 (1 cell), and 40 (2 cells), respectively. Our results show that the DL-based phase images are visually similar to the ground-truth phase images and have a high structural similarity index (>0.98). Moreover, the phase difference between the ground-truth and DL-based phase images was smaller than 13%. Our study shows the feasibility of using DL to generate quantitative phase imaging from a single-shot intensity measurement.
Publisher
Optica Publishing Group (formerly OSA)
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science