Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Engineering Science and Ocean Engineering / 工程科學及海洋工程學系
  4. SACS: A Self-Adaptive Checkpointing Strategy for Microkernel-Based Intermittent Systems
 
  • Details

SACS: A Self-Adaptive Checkpointing Strategy for Microkernel-Based Intermittent Systems

Journal
Proceedings of the International Symposium on Low Power Electronics and Design
ISBN
9781450393546
Date Issued
2022-08-02
Author(s)
YEN-TING CHEN  
Liu, Han Xiang
Chang, Yuan Hao
Liang, Yu Pei
Shih, Wei Kuan
DOI
10.1145/3531437.3539705
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/635693
URL
https://api.elsevier.com/content/abstract/scopus_id/85136285352
Abstract
Intermittent systems are usually energy-harvesting embedded systems that harvest energy from ambient environment and perform computation intermittently. Due to the unreliable power, these intermittent systems typically adopt different checkpointing strategies for ensuring the data consistency and execution progress after the systems are resumed from unpredictable power failures. Existing checkpointing strategies are usually suitable for bare-metal intermittent systems with short run time. Due to the improvement of energy-harvesting techniques, intermittent systems are having longer run time and better computation power, so that more and more intermittent systems tend to function with a microkernel for handling more/multiple tasks at the same time. However, existing checkpointing strategies were not designed for (or aware of) such microkernel-based intermittent systems that support the running of multiple tasks, and thus have poor performance on preserving the execution progress. To tackle this issue, we propose a design, called self-adaptive checkpointing strategy (SACS), tailored for microkernel-based intermittent systems. By leveraging the time-slicing scheduler, the proposed design dynamically adjust the checkpointing interval at both run time and reboot time, so as to improve the system performance by achieving a good balance between the execution progress and the number of performed checkpoints. A series of experiments was conducted based on a development board of Texas Instrument (TI) with well-known benchmarks. Compared to the state-of-the-art designs, experiment results show that our design could reduce the execution time by at least 46.8% under different conditions of ambient environment while maintaining the number of performed checkpoints in an acceptable scale.
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science