Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Comparison of Deep Learning Algorithms in Predicting Expert Assessments of Pain Scores during Surgical Operations Using Analgesia Nociception Index
 
  • Details

Comparison of Deep Learning Algorithms in Predicting Expert Assessments of Pain Scores during Surgical Operations Using Analgesia Nociception Index

Journal
Sensors (Basel, Switzerland)
Journal Volume
22
Journal Issue
15
Date Issued
2022-07-23
Author(s)
Jean, Wei-Horng
Sutikno, Peter
SHOU-ZEN FAN  
Abbod, Maysam F
Shieh, Jiann-Shing
DOI
10.3390/s22155496
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/637691
URL
https://api.elsevier.com/content/abstract/scopus_id/85135202620
Abstract
There are many surgical operations performed daily in operation rooms worldwide. Adequate anesthesia is needed during an operation. Besides hypnosis, adequate analgesia is critical to prevent autonomic reactions. Clinical experience and vital signs are usually used to adjust the dosage of analgesics. Analgesia nociception index (ANI), which ranges from 0 to 100, is derived from heart rate variability (HRV) via electrocardiogram (ECG) signals, for pain evaluation in a non-invasive manner. It represents parasympathetic activity. In this study, we compared the performance of multilayer perceptron (MLP) and long short-term memory (LSTM) algorithms in predicting expert assessment of pain score (EAPS) based on patient's HRV during surgery. The objective of this study was to analyze how deep learning models differed from the medical doctors' predictions of EAPS. As the input and output features of the deep learning models, the opposites of ANI and EAPS were used. This study included 80 patients who underwent operations at National Taiwan University Hospital. Using MLP and LSTM, a holdout method was first applied to 60 training patients, 10 validation patients, and 10 testing patients. As compared to the LSTM model, which had a testing mean absolute error (MAE) of 2.633 ± 0.542, the MLP model had a testing MAE of 2.490 ± 0.522, with a more appropriate shape of its prediction curves. The model based on MLP was selected as the best. Using MLP, a seven-fold cross validation method was then applied. The first fold had the lowest testing MAE of 2.460 ± 0.634, while the overall MAE for the seven-fold cross validation method was 2.848 ± 0.308. In conclusion, HRV analysis using MLP algorithm had a good correlation with EAPS; therefore, it can play role as a continuous monitor to predict intraoperative pain levels, to assist physicians in adjusting analgesic agent dosage. Further studies may consider obtaining more input features, such as photoplethysmography (PPG) and other kinds of continuous variable, to improve the prediction performance.
Subjects
analgesia nociception index (ANI); expert assessment of pain score (EAPS); long short-term memory (LSTM); multilayer perceptron (MLP); surgical operation
SDGs

[SDGs]SDG3

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science