Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Instantaneous 3D EEG signal analysis based on empirical mode decomposition and the hilbert-huang transform applied to depth of anaesthesia
 
  • Details

Instantaneous 3D EEG signal analysis based on empirical mode decomposition and the hilbert-huang transform applied to depth of anaesthesia

Journal
Entropy
Journal Volume
17
Journal Issue
3
Date Issued
2015-01-01
Author(s)
Shih, Mu Tzu
Doctor, Faiyaz
SHOU-ZEN FAN  
Jen, Kuo Kuang
Shieh, Jiann Shing
DOI
10.3390/e17030928
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/637723
URL
https://api.elsevier.com/content/abstract/scopus_id/84982732234
Abstract
Depth of anaesthesia (DoA) is an important measure for assessing the degree to which the central nervous system of a patient is depressed by a general anaesthetic agent, depending on the potency and concentration with which anaesthesia is administered during surgery. We can monitor the DoA by observing the patient's electroencephalography (EEG) signals during the surgical procedure. Typically high frequency EEG signals indicates the patient is conscious, while low frequency signals mean the patient is in a general anaesthetic state. If the anaesthetist is able to observe the instantaneous frequency changes of the patient's EEG signals during surgery this can help to better regulate and monitor DoA, reducing surgical and post-operative risks. This paper describes an approach towards the development of a 3D real-time visualization application which can show the instantaneous frequency and instantaneous amplitude of EEG simultaneously by using empirical mode decomposition (EMD) and the Hilbert-Huang transform (HHT). HHT uses the EMD method to decompose a signal into so-called intrinsic mode functions (IMFs). The Hilbert spectral analysis method is then used to obtain instantaneous frequency data. The HHT provides a new method of analyzing non-stationary and nonlinear time series data. We investigate this approach by analyzing EEG data collected from patients undergoing surgical procedures. The results show that the EEG differences between three distinct surgical stages computed by using sample entropy (SampEn) are consistent with the expected differences between these stages based on the bispectral index (BIS), which has been shown to be a quantifiable measure of the effect of anaesthetics on the central nervous system. Also, the proposed filtering approach is more effective compared to the standard filtering method in filtering out signal noise resulting in more consistent results than those provided by the BIS. The proposed approach is therefore able to distinguish between key operational stages related to DoA, which is consistent with the clinical observations. SampEn can also be viewed as a useful index for evaluating and monitoring the DoA of a patient when used in combination with this approach.
Subjects
Depth of anaesthesia | Electroencephalography | Empirical mode decomposition | Hilbert-Huang transform | Sample entropy
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science