Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Rainfall frequency analysis using event-maximum rainfalls – An event-based mixture distribution modeling approach
 
  • Details

Rainfall frequency analysis using event-maximum rainfalls – An event-based mixture distribution modeling approach

Journal
Weather and Climate Extremes
Journal Volume
43
Date Issued
2024-03-01
Author(s)
KE-SHENG CHENG  
Chen, Bo Yu
Lin, Teng Wei
Nakamura, Kimihito
Ruangrassamee, Piyatida
Chikamori, Hidetaka
DOI
10.1016/j.wace.2023.100634
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/638490
URL
https://api.elsevier.com/content/abstract/scopus_id/85180596533
Abstract
Rainfall frequency analysis, an essential work for water resources management, is often conducted by using the annual maximum rainfall series. For rainfall stations with short record lengths and outliers presence, the use of annual maximum series for rainfall frequency analysis may yield design rainfall estimates of higher uncertainties. Moreover, for regions with cyclostationary climate patterns, the annual maximum rainfalls may be caused by different prevalent storm types, which differ in terms of their occurrence frequency and storm rainfall characteristics. In this study, we propose a novel event-maximum-rainfall-based mixture distribution modeling approach for rainfall frequency analysis. By considering the event-maximum rainfalls of individual storm events, the sample size for parameter estimation increases, and the uncertainty of design rainfall estimates reduces. Mixture distribution modeling enables a thorough investigation of the contributing probabilities of different storm types to the annual maximum rainfall. Through rigorous stochastic simulation, we demonstrated the superiority of the proposed approach over the conventional annual maximum rainfall approach. The proposed approach was applied to four representative rainfall stations in Taiwan, and the results revealed that the proposed approach is more robust than the conventional annual maximum rainfall approach. The results provide insights into the contributions of individual storm types to the annual maximum rainfall.
Subjects
Annual maxima | Event-maximum rainfalls | Frequency analysis | Mixture distribution | Negative binomial distribution | Poisson distribution
SDGs

[SDGs]SDG6

[SDGs]SDG13

[SDGs]SDG14

Type
journal article
File(s)
Loading...
Thumbnail Image
Name

@2024_WACE_RFA_Event-based Mixture Dist Modeling.pdf

Size

15.42 MB

Format

Adobe PDF

Checksum

(MD5):3b5907a4f6535f0a3f79c1f483fac953

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science