Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Classification of the implant-ridge relationship utilizing the MobileNet architecture
 
  • Details

Classification of the implant-ridge relationship utilizing the MobileNet architecture

Journal
Journal of Dental Sciences
Journal Volume
19
Journal Issue
1
Date Issued
2024-01-01
Author(s)
Chang, Hao Chieh
Yu, Li Wen
Liu, Bo Yi
PO-CHUN CHANG  
DOI
10.1016/j.jds.2023.08.002
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/638841
URL
https://api.elsevier.com/content/abstract/scopus_id/85168354249
Abstract
Background/purpose: Proper implant-ridge classification is crucial for developing a dental implant treatment plan. This study aimed to verify the ability of MobileNet, an advanced deep learning model characterized by a lightweight architecture that allows for efficient model deployment on resource-constrained devices, to identify the implant-ridge relationship. Materials and methods: A total of 630 cone-beam computerized tomography (CBCT) slices from 412 patients were collected and manually classified according to Terheyden's definition, preprocessed, and fed to MobileNet for training under the conditions of limited datasets (219 slices, condition A) and full datasets (630 cases) without and with automatic gap filling (conditions B and C). Results: The overall model accuracy was 84.00% in condition A and 95.28% in conditions B and C. In condition C, the accuracy rates ranged from 94.00 to 99.21%, with F1 scores of 89.36–100.00%, and errors due to unidentifiable bone-implant contact and miscellaneous reasons were eliminated. Conclusion: The MobileNet architecture was able to identify the implant-ridge classification on CBCT slices and can assist clinicians in establishing a reliable preoperative diagnosis and treatment plan for dental implants. These results also suggest that artificial intelligence-assisted implant-ridge classification can be performed in the setting of general dental practice.
Subjects
Alveolar process | Artificial intelligence | Dental implants | Implantology
SDGs

[SDGs]SDG3

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science