Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Super-Regenerative Oscillator-Based High-Sensitivity Radar Architecture for Motion Sensing and Vital Sign Detection
 
  • Details

Super-Regenerative Oscillator-Based High-Sensitivity Radar Architecture for Motion Sensing and Vital Sign Detection

Journal
IEEE Transactions on Microwave Theory and Techniques
Journal Volume
69
Journal Issue
3
Date Issued
2021-03-01
Author(s)
Yuan, Yichao
Chen, Austin Ying Kuang
CHUNG-TSE WU  
DOI
10.1109/TMTT.2021.3053972
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/640331
URL
https://api.elsevier.com/content/abstract/scopus_id/85101463289
Abstract
A radar sensor architecture based on a super-regenerative oscillator (SRO) with very high sensitivity is presented for vital sign detection and motion sensing. As a proof of concept, the proposed SRO-based radar sensor architecture, operating in its logarithmic mode, incorporates a patch antenna as a frequency-selective network to transmit and receive radio frequency (RF) signals at 2.32 GHz to conduct target sensing. In this prototype, a common source heterojunction (HJ)-FET is adopted as a variable-gain amplifier in the positive feedback loop of SRO, where two quench signals, 200 Hz and 10 KHz, are employed respectively at the gate of the transistor to periodically modulate the oscillation condition. Furthermore, the theoretical analysis for the radar signal gain of the proposed SRO radar sensor is carried out, demonstrating a 20 dB/decade voltage gain with respect to the input signal reflected from the target. Thanks to the intrinsic automatic gain control characteristic of SRO, the voltage gain of radar signal can go beyond 100 dB in theory. To this end, the measured voltage gain of radar signals with different quench frequencies of the SRO is compared with the theoretical values in the logarithmic mode, exhibiting a maximum gain of 70 dB in the experiment. In addition, compared with the self-injection-locked (SIL) architecture, the experimental results show that the proposed SRO-based radar sensor can exhibit 34-39 dB voltage gain improvement, thereby detecting the actuator movement and vital sign signals of human target accurately at a longer distance with higher sensitivity and reduced circuit complexity.
Subjects
High sensitivity | motion sensing | radar sensor | super-regenerative oscillator (SRO) | vital sign detection
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science