Function Clustering to Optimize Resource Utilization on Container Platform
Journal
Proceedings of the International Conference on Parallel and Distributed Systems - ICPADS
ISBN
9798350330717
Date Issued
2023-01-01
Author(s)
Abstract
In recent years, container technology has gained significant attention in the software industry, with many businesses opting for its elasticity, cost-effectiveness, and ease of implementation. The most common way to ensure a seamless user experience is to keep a substantial number of containers active throughout the day, which causes resource over-provision. Conversely, closing the container right after handling the requests can reduce memory consumption but generate a cold start whenever the request arrives. Cold start occurrence and resource usage is a trade-off and presents a significant challenge on the container platform.To address this challenge, we observe that serving consecutive requests with the same container can notably decrease the number of cold starts. We propose TAC, a Temporal Adjacency Function Clustering algorithm, to meet the challenge. TAC selects the functions with time adjacency requests into a cluster from the historical data. TAC packs functions serving time adjacency requests into a cluster to reduce cold starts and enable efficient resource utilization. The experiment result shows that TAC reduces 8% cold start occurrences and 53% memory usage with the real-world traces compared to the state-of-the-art methods, e.g., Defuse [1] and Hybrid histogram policy [2].
Subjects
cold-start | container platform | Function-as-a-Service | serverless
Type
conference paper
