Direct Production of Bio-Recalcitrant Carboxyl-Rich Alicyclic Molecules Evidenced in a Bacterium-Induced Steroid Degradation Experiment
Journal
Microbiology Spectrum
Journal Volume
11
Journal Issue
2
Date Issued
2023
Author(s)
Liu, Zijing
Cai, Ruanhong
Zhuo, Xiaocun
He, Chen
Zheng, Qiang
He, Ding
Shi, Quan
Jiao, Nianzhi
Abstract
Carboxyl-rich alicyclic molecules (CRAM) are highly unsaturated compounds extensively distributed throughout aquatic environments and sediments. This molecular group is widely referred to as a major proxy of recalcitrant organic materials, but its direct biosynthesis remains unclear. Steroids are a typical anthropogenic contaminant and have been previously suggested to be precursors of CRAM; however, experimental evidence to support this hypothesis is lacking. Here, a steroid-degrading bacterium, Comamonas testosteroni ATCC 11996, was incubated in a liquid medium supplemented with testosterone (a typical steroid) as the sole carbon source for 90 days. Testosteroneinduced metabolites (TIM) were extracted for molecular characterization and to examine the bioavailability during an additional 90-day incubation after inoculation with a natural coastal microbial assemblage. The results showed that 1,775 molecular formulas (MFs) were assigned to TIM using ultrahigh-resolution mass spectrometry, with 66.99% categorized as CRAM-like constituents. A large fraction of TIM was respired or transformed during the additional 90-day seawater incubation; nevertheless, 638 MFs of the TIM persisted or increased during incubation. Among the 638 MFs, 394 were commonly assigned in natural deep seawater samples (depths of 500 to 2,000 m) from the South China Sea. Compared to the catabolites of the well-established testosterone degradation pathway, we compiled a list of bio-refractory MFs and potential chemical structures, some of which shared structural homology with CRAM. These results demonstrated direct microbial production of bio-refractory CRAM from steroid hormones and indicated that some of the biogenic CRAM resisted microbial decomposition, potentially contributing to the aquatic refractory dissolved organic matter (DOM) pool. IMPORTANCE CRAM are an operationally defined DOM group comprising a complex mixture of carboxylated and fused alicyclic structures. This DOM group is majorly characterized as refractory DOM in the marine environment. However, the origins of the complex CRAM remain unclear. In this study, we demonstrated that testosterone (a typical steroid) could be transformed into bio-refractory CRAM by a single bacterial strain and observed that some of the CRAM highly resisted microbial degradation. Through molecular comparison and screening, potential chemical structures of steroid-induced CRAM were suggested. This study established the biological connection between steroids and bio-refractory CRAM, and it provides a novel perspective explaining the fate of terrestrial contaminants in aquatic environments. © 2023 American Society for Microbiology. All rights reserved.
Subjects
carbon sequestration
carboxyl-rich alicyclic molecules
refractory dissolved organic matter
steroids
terrestrial contaminants
SDGs
Type
journal article
