Hybrid topological photonic crystals
Journal
Nature Communications
Journal Volume
14
Journal Issue
1
Start Page
4457
ISSN
2041-1723
Date Issued
2023-07-25
Author(s)
Yanan Wang
Hai-Xiao Wang
Li Liang
Weiwei Zhu
Longzhen Fan
Zhi-Kang Lin
Feifei Li
Xiao Zhang
Pi-Gang Luan
Yin Poo
Jian-Hua Jiang
Abstract
Topologically protected photonic edge states offer unprecedented robust propagation of photons that are promising for waveguiding, lasing, and quantum information processing. Here, we report on the discovery of a class of hybrid topological photonic crystals that host simultaneously quantum anomalous Hall and valley Hall phases in different photonic band gaps. The underlying hybrid topology manifests itself in the edge channels as the coexistence of the dual-band chiral edge states and unbalanced valley Hall edge states. We experimentally realize the hybrid topological photonic crystal, unveil its unique topological transitions, and verify its unconventional dual-band gap topological edge states using pump-probe techniques. Furthermore, we demonstrate that the dual-band photonic topological edge channels can serve as frequency-multiplexing devices that function as both beam splitters and combiners. Our study unveils hybrid topological insulators as an exotic topological state of photons as well as a promising route toward future applications in topological photonics.
Publisher
Springer Science and Business Media LLC
Type
journal article
