Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. Effects of feature selection methods in estimating SO2 concentration variations using machine learning and stacking ensemble approach
 
  • Details

Effects of feature selection methods in estimating SO2 concentration variations using machine learning and stacking ensemble approach

Journal
Environmental Technology and Innovation
Journal Volume
37
Start Page
103996
ISSN
2352-1864
Date Issued
2025-02
Author(s)
Pei-Yi Wong
Yu-Ting Zeng
Huey-Jen Su
Shih-Chun Candice Lung
Yu-Cheng Chen
Pau-Chung Chen
Gary Adamkiewicz
TA-CHIH HSIAO  
Chih-Da Wu
DOI
10.1016/j.eti.2024.103996
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/724993
Abstract
Statistical-based feature selection methods have been used for dimension reduction, but only a few studies have explored the impact of selected features on machine learning models. This study aims to investigate the effects of statistical and machine learning-based feature selection methods on spatial prediction models for estimating variations in SO2 concentrations. We collected daily SO2 observations from 1994 to 2018 along with predictor variables such as land-use/land cover allocations, roads, landmarks, meteorological factors, and satellite images, resulting in a total of 428 geographic predictors. Important features were identified using statistical-based feature selection methods including SelectKBest, stepwise feature selection, elastic net, and machine learning-based methods such as random forest. The selected features from the four feature selection methods were fitted to machine learning algorithms including gradient boosting, CatBoost, XGBoost, and stacking ensemble to establish prediction models for estimating SO2 concentrations. SHapley Additive exPlanations (SHAP) was applied to explain the contribution of each selected feature to the model's prediction capability. The results showed that stacking ensemble model outperformed the three single machine learning algorithms. Among the four feature selection methods, the random forest method yielded the highest prediction accuracy (R2=0.80) in the training model, followed by stepwise selection (R2=0.75), SelectKBest (R2=0.75), and elastic net (R2=0.72) in the stacking ensemble model. These results were robust after several validation tests. Our findings suggested that the random forest feature selection method was more suitable for developing machine learning models for air pollution estimation. The identified features also provide important information for urban air pollution management.
Subjects
Feature selection
Random forest
SO2
Spatial modelling
Stacking ensemble
SDGs

[SDGs]SDG3

[SDGs]SDG11

Publisher
Elsevier BV
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science