Surfactin inhibits enterococcal biofilm formation via interference with pilus and exopolysaccharide biosynthesis
Journal
BMC Microbiology
Journal Volume
25
Journal Issue
1
ISSN
1471-2180
Date Issued
2025-02-24
Author(s)
Abstract
Enterococcus faecalis is a significant pathogen in healthcare settings and is frequently resistant to multiple antibiotics. This resistance is compounded by its ability to form biofilms, dense bacterial communities that are challenging to eliminate via standard antibiotic therapies. As such, targeting biofilm formation is considered a viable strategy for addressing these infections. This study assessed the effectiveness of surfactin, a cyclic lipopeptide biosurfactant synthesized by Bacillus subtilis natto NTU-18, in preventing biofilm formation by E. faecalis. Analytical characterization of surfactin was performed via liquid chromatography‒mass spectrometry (LC‒MS). Additionally, transcriptomic sequencing and quantitative PCR (qPCR) were used to investigate alterations in E. faecalis gene expression following treatment with surfactin. The data revealed notable suppression of crucial virulence-related genes responsible for pilus construction and exopolysaccharide synthesis, both of which are vital for E. faecalis adhesion and biofilm structure. Functional tests confirmed that surfactin treatment substantially reduced E. faecalis attachment to Caco-2 cell monolayers and curtailed exopolysaccharide production. Moreover, confocal laser scanning microscopy revealed significant thinning of the biofilms. These observations support the potential utility of surfactin as a therapeutic agent to manage biofilm-associated infections caused by E. faecalis.
Subjects
Bacillus subtilis subsp. Natto
Biofilm inhibition
Enterococcus faecalis
Surfactin
Publisher
Springer Science and Business Media LLC
Description
Article number 85
Type
journal article
