Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Public Health / 公共衛生學院
  3. Health Data Analytics and Statistics / 健康數據拓析統計研究所
  4. Kinetics of Viral Shedding for Outbreak Surveillance of Emerging Infectious Diseases: Modeling Approach to SARS-CoV-2 Alpha and Omicron Infection
 
  • Details

Kinetics of Viral Shedding for Outbreak Surveillance of Emerging Infectious Diseases: Modeling Approach to SARS-CoV-2 Alpha and Omicron Infection

Journal
JMIR Public Health and Surveillance
Series/Report No.
Jmir Public Health and Surveillance
Journal Volume
10
Start Page
e54861
ISSN
2369-2960
Date Issued
2024-09-19
Author(s)
Lin, Ting-Yu
Yen, Amy Ming-Fang
Chen, Sam Li-Sheng
Hsu, Chen-Yang
Lai, Chao-Chih
Luh, Dih-Ling
Yeh, Yen-Po
HSIU-HSI CHEN  
DOI
10.2196/54861
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/731244
Abstract
Background Previous studies have highlighted the importance of viral shedding using cycle threshold (Ct) values obtained via reverse transcription polymerase chain reaction to understand the epidemic trajectories of SARS-CoV-2 infections. However, it is rare to elucidate the transition kinetics of Ct values from the asymptomatic or presymptomatic phase to the symptomatic phase before recovery using individual repeated Ct values. Objective This study proposes a novel Ct-enshrined compartment model to provide a series of quantitative measures for delineating the full trajectories of the dynamics of viral load from infection until recovery. Methods This Ct-enshrined compartment model was constructed by leveraging Ct-classified states within and between presymptomatic and symptomatic compartments before recovery or death among people with infections. A series of recovery indices were developed to assess the net kinetic movement of Ct-up toward and Ct-down off recovery. The model was applied to (1) a small-scale community-acquired Alpha variant outbreak under the “zero-COVID-19” policy without vaccines in May 2021 and (2) a large-scale community-acquired Omicron variant outbreak with high booster vaccination rates following the lifting of the “zero-COVID-19” policy in April 2022 in Taiwan. The model used Bayesian Markov chain Monte Carlo methods with the Metropolis-Hastings algorithm for parameter estimation. Sensitivity analyses were conducted by varying Ct cutoff values to assess the robustness of the model. Results The kinetic indicators revealed a marked difference in viral shedding dynamics between the Alpha and Omicron variants. The Alpha variant exhibited slower viral shedding and lower recovery rates, but the Omicron variant demonstrated swifter viral shedding and higher recovery rates. Specifically, the Alpha variant showed gradual Ct-up transitions and moderate recovery rates, yielding a presymptomatic recovery index slightly higher than 1 (1.10), whereas the Omicron variant had remarkable Ct-up transitions and significantly higher asymptomatic recovery rates, resulting in a presymptomatic recovery index much higher than 1 (152.5). Sensitivity analysis confirmed the robustness of the chosen Ct values of 18 and 25 across different recovery phases. Regarding the impact of vaccination, individuals without booster vaccination had a 19% higher presymptomatic incidence rate compared to those with booster vaccination. Breakthrough infections in boosted individuals initially showed similar Ct-up transition rates but higher rates in later stages compared to nonboosted individuals. Overall, booster vaccination improved recovery rates, particularly during the symptomatic phase, although recovery rates for persistent asymptomatic infection were similar regardless of vaccination status once the Ct level exceeded 25. Conclusions The study provides new insights into dynamic Ct transitions, with the notable finding that Ct-up transitions toward recovery outpaced Ct-down and symptom-surfacing transitions during the presymptomatic phase. The Ct-up against Ct-down transition varies with variants and vaccination status. The proposed Ct-enshrined compartment model is useful for the surveillance of emerging infectious diseases in the future to prevent community-acquired outbreaks.
Subjects
COVID-19
Ct values
PCR testing
SARS-CoV-2 variants
emerging infectious disease
infection surveillance
kinetics of viral shedding
viral load
SDGs

[SDGs]SDG3

Publisher
JMIR Publications Inc.
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science