Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. Multi-Stage Cascaded Deep Learning-Based Model for Acute Aortic Syndrome Detection: A Multisite Validation Study
 
  • Details

Multi-Stage Cascaded Deep Learning-Based Model for Acute Aortic Syndrome Detection: A Multisite Validation Study

Journal
Journal of Clinical Medicine
Journal Volume
14
Journal Issue
13
Start Page
4797
ISSN
2077-0383
Date Issued
2025-07-07
Author(s)
Chang, Joseph
Lee, Kuan-Jung
Wang, Ti-Hao
CHUNG-MING CHEN  
DOI
10.3390/jcm14134797
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-105010295134&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/731412
Abstract
Background: Acute Aortic Syndrome (AAS), encompassing aortic dissection (AD), intramural hematoma (IMH), and penetrating atherosclerotic ulcer (PAU), presents diagnostic challenges due to its varied manifestations and the critical need for rapid assessment. Methods: We developed a multi-stage deep learning model trained on chest computed tomography angiography (CTA) scans. The model utilizes a U-Net architecture for aortic segmentation, followed by a cascaded classification approach for detecting AD and IMH, and a multiscale CNN for identifying PAU. External validation was conducted on 260 anonymized CTA scans from 14 U.S. clinical sites, encompassing data from four different CT manufacturers. Performance metrics, including sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), were calculated with 95% confidence intervals (CIs) using Wilson’s method. Model performance was compared against predefined benchmarks. Results: The model achieved a sensitivity of 0.94 (95% CI: 0.88–0.97), specificity of 0.93 (95% CI: 0.89–0.97), and an AUC of 0.96 (95% CI: 0.94–0.98) for overall AAS detection, with p-values < 0.001 when compared to the 0.80 benchmark. Subgroup analyses demonstrated consistent performance across different patient demographics, CT manufacturers, slice thicknesses, and anatomical locations. Conclusions: This deep learning model effectively detects the full spectrum of AAS across diverse populations and imaging platforms, suggesting its potential utility in clinical settings to enable faster triage and expedite patient management.
Subjects
AI-based solution for radiology
artificial intelligence
deep learning
emergency radiology
machine learning diagnostic performance
Publisher
MDPI AG
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science