Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Graded in-plane Miura origami as crawling robots and grippers
 
  • Details

Graded in-plane Miura origami as crawling robots and grippers

Journal
Journal of Applied Physics
Journal Volume
135
Journal Issue
7
Start Page
074904
ISSN
10897550
00218979
Date Issued
2024
Author(s)
Fang, Qianyi
Xu, Shaofeng
Chu, Ming Shuai
Yan, Ting
Xu, Zhulong
Wu, Tianyue
Wang, Danfeng
Tachi, Tomohiro
KUO-CHIH CHUANG  
DOI
10.1063/5.0181085
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185342286&doi=10.1063%2F5.0181085&partnerID=40&md5=bd7a59e2abd9229c268bad50a18fe9ef
https://scholars.lib.ntu.edu.tw/handle/123456789/732368
Abstract
In this work, we propose a variation of Miura origami which, different from the existing out-of-plane bending Miura origami, has an in-plane bent configuration due to its graded crease pattern. By combining with the one-way shape memory alloy spring, we show that the proposed graded Miura origami can serve as a smart actuator and can be applied to drive crawling robots or grippers. First, we constructed a physical model of the graded Miura origami, from which a curvature-programmable geometric equation is proposed. Then, in addition to providing a mechanical model that can capture the mechanical behavior of the initial force-displacement relationship of the curved beam, we show that the proposed curved origami has a different mechanical behavior compared to the corresponding simple flexible arch, specifically if realized by silicon rubbers. By arranging anisotropic friction to the feet, the origami robot can crawl with an omega-elongation/compression motion like an inchworm. With a closed-loop current source control system using a high-frequency pulse width modulation-based topology, where the strain state of the arched origami is detected by a demodulator-free fiber Bragg grating sensor, the average speed of the origami crawling robot can reach 2.72 mm/s. In addition, by arranging three graded Miura origami, a gripper capable of lifting a weight of 518.5 g can be formed, where the carried load is over 4.5 times its own weight.
Subjects
Arches
Fiber Optic Sensors
Grippers
Shape-memory Alloy
Bend Configuration
Crawling Robots
Geometric Equations
Graded In
Initial Forces
Mechanical Behavior
Mechanical Modeling
Out-of-plane Bending
Physical Modelling
Smart Actuators
Fiber Bragg Gratings
Publisher
American Institute of Physics Inc.
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science