Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Physics / 物理學系
  4. Quantum-Train: rethinking hybrid quantum-classical machine learning in the model compression perspective
 
  • Details

Quantum-Train: rethinking hybrid quantum-classical machine learning in the model compression perspective

Journal
Quantum Machine Intelligence
Journal Volume
7
Journal Issue
2
Start Page
80
ISSN
2524-4906
2524-4914
Date Issued
2025-08-05
Author(s)
Liu, Chen-Yu  
Kuo, En-Jui
Abraham Lin, Chu-Hsuan
Gemsun Young, Jason
Chang, Yeong-Jar
Hsieh, Min-Hsiu
Goan, Hsi-Sheng  
DOI
10.1007/s42484-025-00305-0
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/735055
Abstract
We propose Quantum-Train (QT), a hybrid quantum-classical framework for training neural networks that reduces trainable parameter complexity while maintaining competitive performance. QT addresses/avoids three critical challenges in quantum machine learning (QML): (1) the cost of data encoding into quantum circuits, (2) the large parameter footprint of classical models, and (3) the quantum resource demands during inference. The method leverages a parameterized quantum neural network (QNN) to generate classical model weights via a learnable mapping model, achieving compression from M parameters to O(polylog(M)) under polynomial-depth QNNs. We provide a theoretical approximation bound quantifying QT’s expressivity and empirically validate the framework on classification tasks, showing that QT achieves competitive accuracy using significantly fewer training parameters. Beyond MLPs, we introduce tensor network-based mappings for enhanced parameter efficiency and extend QT to generate LoRA modules (QT-LoRA), demonstrating improved performance over standard LoRA under low-resource constraints. Furthermore, QT models retain predictive accuracy under hardware noise and finite-shot settings, with gradient analyses showing robustness against barren plateau effects. These findings illustrate QT’s potential as a flexible, scalable, and hardware-friendly paradigm for integrating quantum computation into modern machine learning workflows.
Subjects
Efficient learning
Model compression
Quantum computing
Quantum machine learning
Quantum neural networks
Publisher
Springer Science and Business Media LLC
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science